Towards a Categorical Account of Conditional Probability

نویسندگان

  • Robert Furber
  • Bart Jacobs
چکیده

This paper presents a categorical account of conditional probability, covering both the classical and the quantum case. Classical conditional probabilities are expressed as a certain “triangle-fill-in” condition, connecting marginal and joint probabilities, in the Kleisli category of the distribution monad. The conditional probabilities are induced by a map together with a predicate (the condition). The latter is a predicate in the logic of effect modules on this Kleisli category. This same approach can be transferred to the category of C∗-algebras (with positive unital maps), whose predicate logic is also expressed in terms of effect modules. Conditional probabilities can again be expressed via a triangle-fill-in property. In the literature, there are several proposals for what quantum conditional probability should be, and also there are extra difficulties not present in the classical case. At this stage, we only describe quantum systems with classical parametrization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Mental Probability Logic

We propose probability logic as an appropriate standard of reference for evaluating human inferences. Probability logical accounts of nonmonotonic reasoning with system p, and conditional syllogisms (modus ponens, etc.) are explored. Furthermore, we present categorical syllogisms with intermediate quantifiers, like the “most . . . ” quantifier. While most of the paper is theoretical and intende...

متن کامل

A Categorical Basis for Conditional Probability

This paper identifies several key properties of a monad that allow us to formulate the basics of conditional probability theory, using states for distributions/measures and predicates for events/probability density functions (pdf’s). The distribution monad for discrete probability and the Giry monad for continuous probability are leading examples. Our categorical description handles discrete an...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

ON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH

In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1306.0831  شماره 

صفحات  -

تاریخ انتشار 2013